


### B BRAUN SHARING EXPERTISE



## STREAMLINE® FOR DIALOG AIRLESS SYSTEM SET

## **STREAMLINE®** BLOODLINES

Simplified tubing design

Optimized tubing length reduces
 extracorporeal volume

BETTER DIALYSIS DOESN'T JUST COME FROM A BOX.

## ARTERIAL



#### **Arterial pressure POD**

- The airless pressure-transmitting assembly is designed to eliminate blood-air interface
- No need for external transducer
  protector
- Hemodialysis Studies<sup>1,2</sup> show that the elimination of blood-air interface may reduce the risk of clotting which may:
  - Lower heparin needs as compared to conventional bloodlines
  - Decrease the number of blood-side machine alarms



Locksite® needleless access

 Reduced risk of accidental needlesticks

### VENOUS



#### Airless venous vortex chamber

- No air-gap, Streamline venous chamber runs completely filled with blood
- Horizontal "vortex" flow of blood designed to reduce stagnation, foaming, splashing, and microbubble formation



#### Slim venous filter

• Designed to reduce clotting by reducing blood to surface contact



#### **Venous pressure POD**

- The airless pressure-transmitting assembly is designed to eliminate blood-air interface
- Elimination of blood-air interface may reduce the risk of clotting

# RESULTS OF FOUR CLINICAL STUDIES WITH **STREAMLINE**<sup>®</sup> BLOODLINES AND CONVENTIONAL BLOODLINES

Results summarized below were obtained with Streamline tubing sets used with the Fresenius 2008 series machine.

|                                                                                              | Study 1 <sup>3</sup>                        | Study 2 <sup>4</sup>                                   | Study 3 <sup>5</sup> | Study 4 <sup>6</sup>                                                    |
|----------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------|----------------------|-------------------------------------------------------------------------|
| Authors                                                                                      | James D. Cooke, RN CNN<br>and John Moran MD | Sharon Haas RN, CDN<br>Manohar Ahuja MD,<br>MBBS, MRCP | Pat Smith R.N., CNN  | Joan E. Arslanian Carl M.<br>Lockman Yvette C. Parker<br>Chaim Charytan |
| Study design                                                                                 | Cross-over                                  | Cross-over                                             | Cross-over           | Cross-over                                                              |
| Study sample size (n)                                                                        | 117                                         | 67                                                     | 117                  | 202                                                                     |
| Results with Streamline                                                                      |                                             |                                                        |                      |                                                                         |
| Increase in blood<br>flow rate (%)                                                           | 18%                                         | 5%                                                     | 4%                   | 19%                                                                     |
| Change in<br>arterial pressure (%)                                                           | Not assessed                                | -16%                                                   | -12%                 | -4%                                                                     |
| Increase in % of<br>patients meeting target<br>Kt/V as compared to<br>conventional bloodline | +20.7% @ target 1.4                         | +10% @ target 1.4                                      | +4% @ target 1.2     | +34% @ target 2.0                                                       |
| Change in heparin dose                                                                       | -28.0%                                      | -57%                                                   | Not assessed         | Not assessed                                                            |
| Change in dialysate<br>flow rate                                                             | -26.0%                                      | Not assessed                                           | -7%                  | Not assessed                                                            |

The summaries in the table above were gathered from public available information and are not intended for comparison purposes.

#### References

1. Kitamoto Y, Fukui H, Matsushita K, Sato T, Soejima H, Noguchi Y, Kasama T. Suppression of thrombin formation during hemodialysis with triglyceride. ASAIO J. 1993;39(3):M581–M583. 2. Polaschegg HD. The extracorporeal circuit. Semin Dial. 1995;8(5):299–304. 3. Cooke JD, Moran J. StreamLinetm air- less system set optimizes dialysis adequacy with reduced costs. Poster presented at American Society of Nephrology Conference, 2007. 4. Haas S, Ahuja M. Improving hemodialysis adequacy, anticoagulation and dialyzer efficiency with Streamline bloodline. Poster presented at American Society Nephrology Conference, 2010. 5. Smith P. Streamline bloodlines improve Kt/V while lowering dialysate usage. Poster presented at Nation Kidney Foundation Conference, 2010. 6. Arslanian JE, Lockman CM, Parker YC, Charytan C. Improved blood flow and adequacy with streamline bloodlines. Abstract presented at American Society of Nephrology Conference, 2010.